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3. /Q
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Lecture 1: Endomorphisms over Fq

Why should we care about endomorphism rings? Well if we want to understand an object we
should try too understand its symmetries. Specifically these impact on rational points, Mordell-
Weil ranks and more but its also a lot of fun.

Let F be a perfect field, F al and GalF := Gal(F al/F ). Let A be an abelian variety over
F , with multiplication law m : A × A → A, identity e : specF → A and inversion i : A → A,
satisfying group laws.

If K ⊇ F then write AK := A×F specK and write Aal = A×F F al,

Definition 1.1. A homomorphism of abelian varieties φ : A → A′ is a morphism of abelian
varieties (over F ) respecting m, e, i and m′, e′, i′. e.g. for m

A×A m //

φ×φ
��

A

φ

��
A′ ×A′ m

′
//// A′

An isogeny is a homomorphism such that φ is surjective and dimA = dimA′

Definition 1.2. The degree of an isogeny is

deg φ = [F (A) : F (A′)]

Remark 1.3. If char(F ) - deg φ then deg φ = #(kerφ)(F al).

Example 1. deg([n]A : A→ A) = n2 dimA.

Lemma 1.4. If φ : A → A′ is an isogeny with degree n = deg φ, then there is an isogeny
ψ : A′ → A such that φ ◦ ψ = [n]A′ and ψ ◦ φ = [n]A.

Sketch. kerφ ⊂ A[n] so we have a commutative diagram:

A
[n] //

φ

��

A

A

ψ

OO

If there is some isogeny ψ : A→ A′ then we write A ∼ A′.

Definition 1.5. A is simple (over F ) if A � A1×A2 nontrivially, i.e. for dimA1,dimA2 ≥ 1.
Say A is geometrically simple if Aal is simple.

Lemma 1.6. There is a unique isogenous representation A ∼ An1
1 × . . . A

nt
t with each Ai simple,

pairwise nonisogenous and ni ∈ Z≥1.
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2 Finite Fields
Let F = Fq and p = char(F ). Let π = Frobq : A→ A be the q power Frobenius. Let

CA(T ) = C(T ) := det
(
1− Frob∗qT | H1

et(A
al,Q`)

)
` - q

which we will call the characteristic polynomial (charpoly) of Frobenius, the correct term is
probably reciprocal characteristic polynomial but we’re clocking back to the 90’s and calling it
this. Then we have some properties

• degC(T ) = 2g = 2 dimA

• C(T ) ∈ 1 + TZ[T ] (independent of `)

• #A(Fq) = C(1).

• Factoring C(T ) :=
∏2g
i=1(1− ziT ) with |zi|C =

√
q.

• qgT 2gc
(

1
qT

)
= C(T ) so can order roots ziz2g+1−i = q for i = 1, . . . , g

• C(T ) = det (1− FrobT | T`(A)) for T`(A) = lim←−nA[`n] and ` 6= p.

Example 2. g = 1, A = E an elliptic curve then C(T ) = 1− aT + qT 2 and

#E(Fq) = q + 1− a = c(1).

(If X is a nice curve, then this polynomial is the L-polynomial of the jacobian as in Andrew
Sutherlands course.)

Theorem 2.1 (Tate). TFAE

(i) A′ is isogenous to a subabelian variety of A,

(ii) C ′(T ) := CA′(T ) | C(T ) in Q[T ].

Corollary 2.2. A ∼ A′ ⇐⇒ C(T ) = C ′(T )

Example 3. CA(T ) = (1 + 5T 2)(1− 2T + 5T 2)⇒ A ∼ E1 × E2.

Let O = End(A) := Hom(A,A), O is a ring with Z ⊂ O.
Let B := O ⊗Z Q = End(A)Q the Endomorphism Algebra
From ϕ ∈ O an isogeny we know that we have ψ such that ϕψ = n ∈ O so ϕ−1 = ψ/n. Note

that B is well defined on the isogeny class of A, and End(A) ∼= Zr for r ≥ 1 as abelian groups.
If we look at the isogenous product of simple abelian varieties

A ∼ An1
1 × · · · ×A

nt
t ⇒ B = Mn1

(End(A1)Q)× · · · ×Mnt
(End(At)Q)

= Mn1
(B1)× . . .Mnt

(Bt)

where the Bi are division algebras over Q and this is thus a semisimple Q-algebra.

Theorem 2.3 (Tate). Let π = Frobq ∈ O

(a) Z(B) = Q[π],
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(b) B = Q[π] if and only if B = Z(B) if and only if C(T ) is seperable (i.e. has no multiple
roots),

(c)

Q[π] = Q ⇐⇒ C(T ) = Power of linear polynomial
⇐⇒ B ∼= Mg(B1), B1 = Quaternion algebra over Q,Ram(B1) = {p,∞}
⇐⇒ A ∼ Eg ∈ supersingular.

Recall C(T ) = det (1− πT | V ) =
∏2g
i=1(1− ziT ).

Definition 2.4. C⊗2(T ) = det
(
1− π⊗2T | V ⊗ V

)
=
∏(2g)2

i,j=1(1− zizjT ) ∈ 1 + TZ[T ].

Factor C⊗2 = h(T )
∏
i Φki(qT ) ∈ Q[T ], where Φki is the kith cyclotomic polynomial, so the

minimal polynomial of a primitive kith root of unity.

Lemma 2.5 (Tate). We can show that

(a)
rkZO = dimQB = # {i : ki = 1}

More generally, rkZ End(AFqr
) =

∑
ki|r ϕ(ki), where ϕ is here the Euler totient function.

(b) Let K = LCM {ki}. Then FqK is the minimal field extension of Fq such that all endomor-
phisms of A are defined. i.e. such that End(Aal) = End(AFqK

).

Example 4. q = 5, C(T ) = 1− 2T 2 + 25T 4, g = 2. A is simple over F5.

C⊗2(T ) = (1− 5T )4(1 + 5T )4(1− 2T + 25T )2(1 + 2T + 25T 2)2

= Φ1(5T )4Φ2(5T )4h(T )

so k1 = . . . k4 = 1 and k5, . . . , k8 = 2 and so K = 2.

rk(End(A)) = 4 B = Q[π] ∼= Q[T ]/ 〈C(T )〉
rk(End(AF25)) = 8 End(Aal) is defined over F25

Definition 2.6.

C(r)(T ) = det(1− πrT | V ) =

2g∏
i=1

(1− zri T )

for r ≥ 1

Example 5. C(2)(T ) = (1− 2T + 25T 2)2 and so AF25 ∼ E2, #E(F25) = 25− 2 + 1 = 24.
End(AF25)Q ∼= M2(K) for K = Q[T ]/(1− 2T + 25T 2) ∼= Q(

√
−24)

Theorem 2.7 (Tate Conjecture for Abelian Varieties). The cyclic class map is an isomorphism

Corr(A,A)⊗Q` → (H1
et(A

al,Q`)⊗2(1))GalFq

where Frobq acts by q−1Frobq as we have a Tate twist.

End(A) ∼= Corr(A, ,A∨)
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dimB = dim Corr(A,A)Q

Moreover,

dimQB = dimQ`
(Corr(A,A)⊗Q`)

= dimQ`
(Fixed subspace of H⊗2(1) under Frobq)

= dimQ`
(Fixed subspace of H⊗2 where Frobq acts by q)

= # {(i, j) : zizj = q}
= # {i : ki = 1}

Lecture 2: Endomorphisms over C

3 Endomorphisms over C
Let A/C be an abelian variety with g = dimA. Let T0(A) be the tangent space of A at O. Then
T0(A) ∼= Cg is a Lie group, so has an exponential map

exp : T0(A)→ A(C)

which is in fact surjective. Let Λ = ker exp, then A(C) ∼= Cg/Λ, and further A(C)[n] = 1
nΛ/Λ.

T`A = lim←−
n

A[`n] ∼= Λ⊗Z Z` ∼= Z2g
` .

Alternatively

A(C) ∼= Ã(C)/π1(A)
∼= Cg/Λ

where Λ ∼= H1(A,Z). Now, let V := Cg and choose a Z-basis {λi}2gi=1 for Λ. Then Π := (λij)i,j ∈
Matg×2g(C), is the big period matrix. A change of basis of Cg acts by PΠ for P ∈ GLg(C),
so Π = (P1 P2),

P−12 Π = (Ω 1g)

for Ω ∈ GLg(C) which we call the small period matrix. Let X/C be a nice curve, and
ω1, . . . , ωg ∈ H0(X,Ω1) be a C-basis of holomorphic 1-forms on X.

Example 6. If X : y2 = f(x) with f(x) squarefree and deg(f) ∈ {2g + 1, 2g + 2}, then

ωi = xi−1
dx

y
.

The set X(C) is a compact (connected) Reimann surface. Let α1, beta1, . . . , αg, βg be a Z-
basis of H1(X,Z) that is symplectic, i.e. αi intersects βi with (oriented) intersection 1, αi does
not intersect βj for i 6= j. So the intersection form is(

0 1g
−1g 0

)
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Figure 1: Example of symplectic basis on a genus 2 surface

The integration pairing

Ω1 ×H1(X,Z)→ C

(ω, ν) 7→
∫
ν

ω

is nondegenerate. This gives an injection H1(X,Z)→ HomC(Ω1,C). Let

Λ :=

{(∫
ν

ωj

)T
: ν ∈ H1(X,Z)

}
⊂ Cg

Let JacX := HomC(Ω1,C)/H1(X,Z) ∼= Cg/Λ be the Jacobian. It has big period matrix Π =
(P1 P2) where

P1 =

(∫
αi

ωj

)
i,j

P2 =

(∫
βi

ωj

)
i,j

Example 7. X : y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1, LMFDB:262144.d.324288.1

A : − JacX, then Π =

(
0.33− 0.008i . . .
−0.89− 1.4i . . .

)
∈ Mat2×4(C).

Cutting open X along paths αi, βj and applying Greens theorem we find

Definition 3.1. Π ∈ Matg×2g(C) is a Riemann matrix, if there is a skew-symmetric (alter-
nating) E ∈M2g(Z)alt, detE 6= 0 such that

1. ΠE−1ΠT = 0; and

2.
√
−1ΠE−1Π∗ is a positive definite hermitian form.

where A∗ is the conjugate transpost of A.
We say E is a Polarisation on Π.

Theorem 3.2 (Riemann-Poincaré). Cg/ΠZ2g is an abelian variety if and only if Π is a Riemann
matrix for some E.

Proposition 3.3. If E realises Π as a Riemann matrix, then ER : V × V → R defines

H : V × V → C
H(x, y) = ER(

√
−1x, y) +

√
−1ER(x, y)

which is a positive definite, hermitian form and conversely.
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Question 1. How do we read off the endomorphism algebra from the period matrices?

End(A) can be thought of in two ways, identifying A = Cg/Λ:

• First, End(A) = {M ∈Mg(C) : MΛ ⊂ Λ} ⊂ Mg(C), i.e. the homotheties. So MΠ = ΠR
where R ∈M2g(Z) since landing in Λ means you have a Z-linear combination of the basis.
Note that oen of M or R uniquely determines the other. M is called the (co)tangent
representation. If α ∈ End(A), then [α] � H0(X,Ω1)∨.

• Second, we view Λ = Z2g ⊂ R2g equipped with a complex structure, a map J : R2g →
R2g such that J2 = −1 induced by multiplication by i on Cg.

Example 8. g = 1, Π = (P1 P2), Λ = Zτ1 + Zτ2 and i

(
τ1
τ2

)
= J

(
τ1
τ2

)
. Then End(A) ∼=

{R ∈M2g(Z) | RJ = JR}
⊂M2g(Z).

H1(X,Z) � ([α] = R)⇒ 0→ End(A)→M2g(Z)

So End(A) ∼= Zr for r ≤ (2g)2. Note that RJ = JR is a linear condition on R ∈ M2g(Z).
LLL tells us that we can find short integer candidates.

Example 9. Continuing 7 we have J =

−0.25 −0.19 . . .
. . . . . . . . .
...

. . . . . .

 and J2 = −1. There are then

16 equations in 16 unknowns. Find the integer kernel spanned by 4 matrices (see exercises).

M ≈
(

1 0
0 1

)
,

(
− 1

2 −
i
2 . . .√

2
2 − i . . .

)
If X is defined over F ⊂ C with [F : Q] < ∞ and we choose an F -basis for H0(X,Ω1) then
M,R ↔ α ∈ End(JacX) is defined over K ⊃ F if and only if M ∈ Mg(K). This tells us that
End(A) = Z. If we let K = Q(ζ8) then End(AK)

?
= Z 〈α, β〉 ⊆ B, disc(B) = 6 with α2 = 3,

β2 + β + 1 = 0, αβ + βα = 3 and β = 1 + β. We will explain the question mark tomorrow.

Lecture 3: Endomorphisms over Q

4 Number Fields
We’re going to talk about endomorphism rings of Jacobians over number fields today, which will
involve patching together the previous two lectures.

Let F be a number field and F al ⊂ C algebraic closure. Let X/F be a nice curve of genus
g ≥ 1. Let A := JacX be the jacobian of X. Write Xal and Aal for the base changes to F al as
before. By “compute the endomorphism ring of A” we mean: Give as output,

• A (minimal) finite Galois extension K ⊆ F such that End(AK) = End(Aal) (End is finitely
generated and we can extend by each generator to obtain finite extension),

• A Z-basis for End(AK); and
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• The multiplication table and Gal(K/F )-action on basis.

Example 10. Remember our running example:
X : y2 = x5− x4 + 4x3− 8x2 + 5x− 1. Let K = Q(ζ8) End(AK) = O ⊂ B, O maximal order

in B a quaternion algebra with disc(B) = 6.

Theorem 4.1 (Lombardo). There exists a deterministic algorithm algorithm to compute the
endomorphism ring.

Proof. (1) By resolving singularities of SymgX, embed

A→ PN

(2) End(Aal) is defined over K = F (A[3]).

(3) By night, try all rational maps A // A over K. (Hey theres only countably many...),
gives us a “lower bound”.

(4) By day, compute an “upper bound” by creeping up (approximating to finite precision) on
the isomorphism

End(AK)⊗Z Z` ∼= EndGal(F al/K) T`(AK)

Eventually (at sunset) ((3)) and ((4)) agree.

Notation: Let K be such that End(Aal) = End(AK) and let

AK ∼ An1
1 × · · · ×A

nt
t

Let Bi = End(Ai)Q, a division algebra, and Li = Z(Bi).

dimLi
Bi = e2i

for some ei ∈ Z≥1. Then

End(AK)Q ∼= Mn1(B1)× · · · ×Mnt(Bt)

dimQ(Bi) = [Li : Q]e2i . Thus

dimQ(End(AK)Q) =

t∑
i=1

n2i e
2
i [Li : Q].

4.1 Better Days (Upper Bounds)
Let p be a prime of good reduction for X and let Fp be its residue field. Specialisation gives an
injective ring homomorphism

End(Aal) ⊆ End(AFal
p

)

where AFal
p
is the reduction of A over Falp . This inclusion is rarely strict.

Let kp be such that End(AFal
p

) is defined over Fpkp .

Proposition 4.2. (a) For all i = 1, . . . , t there exists gp,i(T ) ∈ 1 + TZ[T ] such that

C
(kp)
p (T ) = gp,1(T )e1 . . . gp,t(T )et
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(b) Factor C(kp)
p (T ) =

∏t
i=1 hp,i(T )mp,i , then

2

t∑
i=1

ein
2
i dimAi =

t∑
i=1

e2in
2
i deg gp,i ≤ dimQ(End(AFal

p
)Q)

with equality on the end if and only if gp,i(T ) are seperable and pairwise coprime. (See
exercise sheet.)

Corollary 4.3. (a)) If equality holds in ((b)) then t ≤ tp.

(b)) If equality holds in ((b)) and t = tp then

{(eini, ni dimAi)}ti=1 =

{
(mp,i,

1

2
mp,i deg hp,i)

}tp
i=1

Example 11. C(2)
5 (T ) = (1− 2T + 25T 2)2 in our usual example, t ≤ t5 = 1.

Proposition 4.4 (Zywina). There is a set S of primes of positive density such that t = tp and
equality holds in ((b)). Assuming Mumford-Tate conjecture for A. (We do not go into detail on
this conjecture, but essentially it says that certain things seen in the hodge theory can be viewed
via the Galois representation theory.)

Lemma 4.5. Given the multiset {eini}i, the set S is effectively computable.

Remark 4.6. We can guess {eini}i.

Lemma 4.7. If p ∈ S then Li
� � // Q[T ]/(gp,i(T )) = Mp,i

Proposition 4.8 (Zywina). For any q ∈ S, for all p ∈ S outside of a set of density zero, we
have “Li = Mp,i ∩Mq,i”. i.e. If M ′ �

� // Mp,i and M ′ �
� // Mq,i then M ′ �

� // Li .

Example 12.

C7(T ) = 1 + 6T 2 + 49T 4 k7 = 2

C
(2)
7 (T ) = (1 + 6T + 49T 2)2

M5 = Q(
√
−24)

M7 = Q(
√
−40)

So in particular L = Q. Hence dimQ End(A)Q = dimQB = (e1n1)2[L1 : Q] = 22 · 1 = 4

4.2 Better Nights (Lower Bounds)
Recall from our numberical calculations that we obtain candidate endomorphisms α and matrices
M ∈ Mg(K) and R ∈ M2g(Z). We compute a “certificate” that α is an endomorphism. Let
P0 ∈ X(F ). Then we have the Abel-Jacobi map

X �
� AJ // A

α // A
mum // Symg(X)

where AJ sends P 7→ [P ] − [P0], and the Mumford map mum is given by [D] 7→ {Q1, . . . , Qg}
where [D] = [Q1 + · · ·+Qg − gP0].

Let D ⊇ {(P,Qi) : P ∈ X} be the Zariski closure of the graph of α,
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Theorem 4.9 (Costa-Mascot-Sijsling-Voight). There is a deterministic algorithm that, given
M ∈Mg(K), returns:

• true if M ↔ α ∈ End(AK) with divisor D and α(AJ(X)) 6⊆ 1 bad locus of mum.

• (Not quite sure yet, at the moment just returns false for undecided)

Lecture 4: Classification

We begin by finishing up from last time. F was a number field and X/F a nice curve, with
A := JacX and M ∈Mg(K) a candidate endomorphism ↔ α ∈ End(AK)

Theorem 4.10 (Costa-Mascot-Sijsling-Voight). There exists a deterministic algorithm to certify
M ↔ α with divisor D.

Proof. Suppose that P0 ∈ X(F ) is not a Weierstrass point, choose x a uniformizer at P0. We
compute:

α([P̃0 − P0]) = [Q̃1, . . . , Q̃g − gP0]

where P0 ∈ X(F [[x]]) is the formal expansion (this you should think of the local ring at P0).

In the exercises you get to carry this out: Solve a differential equation formally

g∑
i=1

x∗j (ωi) = α∗(ωi),

for xj := x(Q̃j).
Now we begin todays lecture!

5 Classification of Endomorphisms
Let F be a field and A/F an abelian variety, then up to isogeny we know

A ∼ An1
1 × · · · ×A

nt
t

where Ai are simple, so
End(A)Q ∼= Mn1

(B1)× · · · ×Mnt
(Bt)

with Bi := End(Ai)Q which is a (finite-dimensional (as the Tate module is finitely generated))
division (Q-)algebra. From now on A is simple so that B = End(A)Q is a division algebra (and
hence simple, i.e. no nontrivial 2-sided algebras). Let L := Z(B) be the centre, a number field.
B is a central L-algebra, and we call such things CSA’s.

If B′ is a CSA over L and L′/L a field extension then B ⊗L L′ is again a CSA.

Question 2. Which CSA’s can turn up for endomorphism rings of abelian varieties?
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We will turn out to have some extra involution structure which will restrict the possible
choices.

Let F ⊂ R be a dubfield and B a finite-dimensional F -algebra. B acts on itself by left
multiplication: ∀α ∈ B define the map

λα : B → B

x 7→ αx

which is F linear. Define TrB/F α− Trλα.

Definition 5.1. An involution · : B → B is a F -linear map such that

(i) 1 = 1;

(ii) α = α for all α ∈ B

(iii) αβ = αβ for all α, β ∈ B.

An involution is positive if Tr(αα) ≥ 0 for all α ∈ B.

Remark 5.2. · is positive if and only if if is positive on B ⊗F R = BR.

Example 13. id : R→ R is positive since Tr(x2) = x2 ≥ 0.
Complex conjugation · : C→ C since Tr(zz) = 2 |z|2 ≥ 0.

Example 14. Let H =
(−1,−1

R
)
be Hamiltons quaternions. Then the involution H→ H given by

α 7→ 2t− α

where α = t + xi + yj + zij, is positive since αα = αα = t2 + x2 + y2 + z2 ≥ 0, so that
Tr(αα) = 4(t2 + x2 + y2 + z2) ≥ 0.

Example 15. Let D = R,C,H and · the involution choice above. Let B = Mn(D) and define

∗ : B → B

α 7→ αT

the conjugate transpose map. If α = (ai,j)i,j=1..n then

Tr(α∗α) = n(dimR(D))

n∑
i,j=1

ai,jai,j

So that ∗ is positive.

Theorem 5.3 (Frobenius-Wedderburn). A simple R-algebra is isomorphic to Mn(D) for one of
D = R,C,H.

Proposition 5.4. Let B ∼= Mn(D) and ∗ the conjugate transpose map. Let ·† : B → B be
another positive involution on B. Then there is µ ∈ B× with µ∗ = µ such that all eigenvalues of
λµ are positive and

α† = µ−1α∗µ

for all α ∈ B and conversely.

Returning to endomorphism rings we have

11



Theorem 5.5. B has a positive involution.

Proof over C: Let A(C) ∼= V/Λ. We say f : V → C is a C-antilinear functional if

f(x+ x′) = f(x) + f(x′)

f(ax) = af(x)

for all x, x′ ∈ V, α ∈ C. Write f ∈ HomC(V,C) =: V ∗. Now

Λ∗ := {f ∈ V ∗ | Im f(Λ) ⊂ Z}
A∨ := V ∗/Λ∗

(Avee)∨ ∼= A

Let H : V × V → C be a polarisation on A, a positive definite hermitian form on V , such that
E := ImH(Λ) ⊂ Z gives a C-linear map λ : V → V ∗ via x 7→ H(x,−). λ(Λ) ⊂ Λ∗ so λ : A→ A∨

is an isogeny. In general A∨ := Pic0(A).
A new definition of polarisation: Isogeny λA → A∨, for φ ∈ End(A) define φ† ∈ End(A)Q by
φ† := λ−1φ∨λ. Consider

A
λ // A∨

φ∨

��
A

λ // A∨

altering this we have

A
λ //

φ†

��

A∨

φ∨

��
A A∨

λ−1

oo

extend Q-linearly to B and then ·† : B → B is an involution that depends on λ. We have:
H(φx, y) = H(x, φ†y), i.e. φ† is the adjoint of φ. B acts faithfully on V . If r ∈ R is an
eigenvalue of φ†φ on B then for x an eigenvector on V , by duality we get

rH(x, x) = H(rx, x) = H(φ†φx, x) = H(φx, φx) > 0.

So in particular r = H(φx,φx)
H(x,x) > 0 and thus Tr(φ†φ) ∈ R>0.

Let K := Z(B) and F = K〈†〉 be the fixed field for the involution †.

Lemma 5.6. F is a totally real number field and either K = F or K is a CM-field.

Theorem 5.7 (Albert). Let n = [F : Q], then F is one of

I. (real multiplication) B = K = F and † = id

II. (quaternion multiplication by matrices) K = F , B is a (division-) quaternion algebra over
F such that

B ⊗Q R ∼= M2(R)n

III. (quaternion multiplication by Hamiltons quaternions) K = F , B is a (division-) quaternion
algebra over F such that

B ⊗Q R ∼= Hn

12



Type B⊗Q R Constraints
I. Rn n | g
II. M2(R)n 2n | g
III. Hn 2n | g
IV. Md(C)n nd2 | g

Table 1: What further is known (char(F ) = 0, g = dimA, n = [F : Q])

IV. (CM) K ⊇ F and B ⊗Q R ∼= Md(C)n for some d ∈ Z≥1.

We summarise what further is known with Table.

Example 16. End(AQ(i))Q ∼= H for A in isogeny class with LMFDB label 4096.b.65536.

Definition 5.8. A Weil q-number is π ∈ Qal ⊂ C such that |πi|C =
√
q for all conjugates πi.

Theorem 5.9 (Honda-Tate). There is a bijection

{Simple abelian varieties over Fq} /isogeny↔ {Weil q-numbers } /Galois conjugacy

Given by A 7→ root of CA(T ). For A, let B = End(A)Q.

1. Z(B) = Q(π) =: L

2. 2 dimA = 2g = e[L : Q]

3. B splits at every non-archimedean v - p = charFq.

4. B ramifies at every v real.

5. invv(B) = v(π)
v(q) [Lv : Qp] mod Z for v | p.

6. CA(T ) = mA(T )e, for e the least common denominator of mv(B) for all places v, where
mA is the minimal polynomial of π = Frobq.

Example 17. 1−√qT , q a square and π =
√
q is a Weil q-number. L = Q(π) = Q. inv∞(B) = 1

2
and invp(B) = 1

2 . Thus e = 2 and we have a supersingular elliptic curve.

13


	Course Outline
	Finite Fields
	Endomorphisms over C
	Number Fields
	Better Days (Upper Bounds)
	Better Nights (Lower Bounds)

	Classification of Endomorphisms

